Extensions 1→N→G→Q→1 with N=C52 and Q=Dic3

Direct product G=N×Q with N=C52 and Q=Dic3
dρLabelID
Dic3×C52300Dic3xC5^2300,18

Semidirect products G=N:Q with N=C52 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C52⋊Dic3 = C52⋊Dic3φ: Dic3/C1Dic3 ⊆ Aut C521512+C5^2:Dic3300,23
C522Dic3 = C522Dic3φ: Dic3/C2S3 ⊆ Aut C52603C5^2:2Dic3300,13
C523Dic3 = C5×C3⋊F5φ: Dic3/C3C4 ⊆ Aut C52604C5^2:3Dic3300,32
C524Dic3 = D5.D15φ: Dic3/C3C4 ⊆ Aut C52604C5^2:4Dic3300,33
C525Dic3 = C15⋊F5φ: Dic3/C3C4 ⊆ Aut C5275C5^2:5Dic3300,34
C526Dic3 = C152F5φ: Dic3/C3C4 ⊆ Aut C52304C5^2:6Dic3300,35
C527Dic3 = C5×Dic15φ: Dic3/C6C2 ⊆ Aut C52602C5^2:7Dic3300,19
C528Dic3 = C30.D5φ: Dic3/C6C2 ⊆ Aut C52300C5^2:8Dic3300,20


׿
×
𝔽